Polylogarithm function

Duo Tao

California Institute of Technology

November 25, 2018

Background

Today I am trying to do an integral

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{t}{1+e^{t}} d t \tag{1}
\end{equation*}
$$

I do not know how to do it so I tried to use Mathematica, which gives me

$$
\begin{equation*}
\frac{23 \pi^{2}}{12}-2 \pi \log \left(1+e^{2 \pi}\right)-\text { PolyLog }\left[2,-e^{2 \pi}\right] \tag{2}
\end{equation*}
$$

I do not understand what is "PolyLog".

PolyLog

I checked Wikipedia [2] and learned that it is called a Polylogrithm function, which is a nonelementary functions (elementary functions are functions with finite number of arithmic operations). It is defined as, according to Wikipedia

$$
\begin{equation*}
L i_{s}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{s}} \tag{3}
\end{equation*}
$$

Thus, the one I encountered will be an infinite sum such as

$$
\begin{equation*}
\text { PolyLog }\left[2,-e^{-2 \pi}\right]=\sum_{k=1}^{\infty} \frac{\left(-e^{-2 \pi}\right)^{k}}{k^{2}} \tag{4}
\end{equation*}
$$

In General

I did not get into the details of why the integral turned out to be a Polylogrithm, according to the definition. However, what is useful is that, in general,

$$
\begin{equation*}
L i_{s}(z)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{t^{s-1} d t}{e^{t} / z-1} \tag{5}
\end{equation*}
$$

where $\Gamma(s)$ is called Gamma function, defined as $\Gamma(n)=(n-1)$! [1].

References

E
Wikipedia contributors. Gamma function - Wikipedia, The Free Encyclopedia. [Online; accessed 25-November-2018]. 2018. URL: https://en.wikipedia.org/w/index.php? title=Gamma_function\&oldid=870308554.

- Wikipedia contributors. Polylogarithm - Wikipedia, The Free Encyclopedia. [Online; accessed 25-November-2018]. 2018. URL: https://en.wikipedia.org/w/index.php? title=Polylogarithm\&oldid=862627827.

